Números complexos


Quantas vezes, ao calcularmos o valor de Delta (b2- 4ac) na resolução da equação do 2º grau, nos deparamos com um valor negativo (Delta < 0). Nesse caso, sempre dizemos ser impossível a raiz no universo considerado (normalmente no conjunto dos reais- R). A partir daí, vários matemáticos estudaram este problema, sendo Gauss e Argand os que realmente conseguiram expor uma interpretação geométrica num outro conjunto de números, chamado de números complexos, que representamos por C













Números Complexos
Chama-se conjunto dos números complexos, e representa-se por C, o conjunto de pares ordenados, ou seja:
z = (x,y)
onde x pertence a R e y pertence a R.

Então, por definição, se z = (x,y) = (x,0) + (y,0)(0,1) onde i=(0,1), podemos escrever que:

z=(x,y)=x+yi
Exemplos:
(5,3)=5+3i
(2,1)=2+i
(-1,3)=-1+3i ...

Dessa forma, todo o números complexo z=(x,y) pode ser escrito na forma z=x+yi, conhecido como forma algébrica, onde temos:
x=Re(z, parte real de z
y=Im(z), parte imaginária de z

Igualdade entre números complexos
Dois números complexos são iguais se, e somente se, apresentam simultaneamente iguais a parte real e a parte imaginária. Assim, se z1=a+bi e z2=c+di, temos que:
z1=z2<==> a=c e b=d

Adição de números complexos
Para somarmos dois números complexos basta somarmos, separadamente, as partes reais e imaginárias desses números. Assim, se z=a+bi e z2=c+di, temos que:
z1+z2=(a+c) + (b+d)

Subtração de números complexos
Para subtrairmos dois números complexos basta subtrairmos, separadamente, as partes reais e imaginárias desses números. Assim, se z=a+bi e z2=c+di, temos que:
z1-z2=(a-c) + (b-d)

Potências de i
Se, por definição, temos que i = - (-1)1/2, então:
i0 = 1
i1 = i
i2 = -1
i3 = i2.i = -1.i = -i
i4 = i2.i2=-1.-1=1
i5 = i4. 1=1.i= i
i6 = i5. i =i.i=i2=-1
i7 = i6. i =(-1).i=-i ...... 

Observamos que no desenvolvimento de in (n pertencente a N, com n variando, os valores repetem-se de 4 em 4 unidades. Desta forma, para calcularmos in basta calcularmos ir onder é o resto da divisão de n por 4.

Exemplo:
i63 => 63 / 4 dá resto 3, logo i63=i3=-i

Multiplicação de números complexos
Para multiplicarmos dois números complexos basta efetuarmos a multiplicacão dois dois binômios, observando os valores das potência de i. Assim, se z1=a+bi e z2=c+di, temos que:
z1.z2 = a.c + adi + bci + bdi2
z1.z2= a.c + bdi2 = adi + bci
z1.z2= (ac - bd) + (ad + bc)i
Observar que : i2= -1


Conjugado de um número complexo
Dado z=a+bi, define-se como conjugado de z (representa-se por z-) ==> z-= a-bi

Exemplo:
z=3 - 5i ==> z- = 3 + 5i
z = 7i ==> z- = - 7i
z = 3 ==> z- = 3 


Divisão de números complexos
Para dividirmos dois números complexos basta multiplicarmos o numerador e o denominador pelo conjugado do denominador. Assim, se z1= a + bi e z2= c + di, temos que:
z1 / z2 = [z1.z2-] / [z2z2-] = [ (a+bi)(c-di) ] / [ (c+di)(c-di) ]


Módulo de um número complexo
Dado z = a+bi, chama-se módulo de z ==> | z | = (a2+b2)1/2. 

Interpretação geométrica
Como dissemos, no início, a interpretação geométrica dos números complexos é que deu o impulso para o seu estudo. Assim, representamos o complexo z = a+bi da seguinte maneira


Forma polar dos números complexos

Da interpretação geométrica, temos que:

que é conhecida como forma polar ou trigonométrica de um número complexo.


Operações na forma polar
Sejam z1=ro1(cos t11) e z2=ro1(cos t1+i sent1). Então, temos que:

Multiplicação

Divisão

Potenciação

Radiciação

Nenhum comentário:

Postar um comentário